Schnelleinstieg Reader

Home|Suche|Friedolin|Webmail de

Wortmarke FSU

Schicht in Ordnung

Physiker weisen erstmals flexible zweidimensionale Kristallgitter nach
PDF erstellen
ReadSpeaker
zurück | vor
18.07.2016
Die Jenaer Physiker Prof. Dr. Torsten Fritz (l.) und Matthias Meißner an einem Rastertunnelmikroskop mit dessen Hilfe sie herausgefunden haben, dass sich Kristallgitter organischer Moleküle flexibel auf einem kristallinen Trägersubstrat ausrichten. Foto: Jan-Peter Kasper/FSU Die Jenaer Physiker Prof. Dr. Torsten Fritz (l.) und Matthias Meißner an einem Rastertunnelmikroskop mit dessen Hilfe sie herausgefunden haben, dass sich Kristallgitter organischer Moleküle flexibel auf einem kristallinen Trägersubstrat ausrichten.
[DOWNLOAD]

Vor 20 Jahren waren Mobiltelefone noch fast so dick wie eine Brotbüchse, heutige Smartphones hingegen sind fast so dünn wie Butterbrotpapier. Ein Grund dafür sind immer neue Forschungsergebnisse im Bereich der organischen Elektronik. Denn vor allem Schichten aus organischen Molekülen, die auf eine - meist metallische - Trägerstruktur aufgetragen werden, haben sich aufgrund ihrer geringen Stärke und ihrer halbleitenden und optischen Eigenschaften für Displays bewährt. Um diese Methode weiterzuentwickeln, ist es deshalb notwendig, mehr darüber zu erfahren, was zwischen Molekül und Metall - oder auch zwischen verschiedenen Molekülschichten - passiert.

Ein wichtiger Fortschritt auf dem Forschungsgebiet dieser Grenzflächeneffekte ist jetzt Physikern der Friedrich-Schiller-Universität Jena gemeinsam mit Kollegen aus Mainz und Dresden gelungen. Sie haben herausgefunden, dass sich Kristallgitter organischer Moleküle flexibel auf einem kristallinen Trägersubstrat ausrichten. Ihre Ergebnisse haben die Jenaer Forscher in dem renommierten Fachjournal ACS Nano veröffentlicht.


Ein flexibles Kristallgitter gebildet

"Die etwa einen Nanometer großen Moleküle richten sich auf den im atomaren Maßstab gewellten Trägerstrukturen oft auf die gleiche Weise aus, um optimales Schichtwachstum zu erreichen", sagt Prof. Dr. Torsten Fritz von der Universität Jena. "Dabei wachsen sie wie Kohlköpfe auf einem Acker in den entsprechenden Vertiefungen bzw. Ackerfurchen", veranschaulicht der Festkörperphysiker. "Das ist auch nicht überraschend, wenn beide Gitter strukturell zueinander passen - etwa als wenn man Eierpackungen aufeinanderstapelt." Doch auch wenn diese Deckungsgleichheit nicht vorliegt, ordnen sich die Moleküle häufig regelmäßig und hochgeordnet an. Um den Grund dafür näher bestimmen zu können, vermaßen die Jenaer Physiker die Kristallgitter der Moleküle mithilfe eines Rastertunnelmikroskops. Dabei konnten sie zum ersten Mal nachweisen, dass die Moleküle ein flexibles Kristallgitter bilden. "Dieses ermöglicht es den Molekülen, sich so auf dem Trägersubstrat auszurichten, dass sie die größte Menge an Energie aus diesem Prozess herausholen", erklärt Matthias Meißner, der die Experimente durchgeführt hat. "Um im Bild zu bleiben: Die Kohlköpfe rollen, da sie miteinander verbunden sind, zwar nicht mehr alle in die Ackerfurchen, aber im Rahmen ihrer flexiblen Verbindungen richten sie sich so aus, dass sie alle den weitesten Weg herunterrollen und die größtmögliche Menge an potenzieller Energie freisetzen." Im Kristallgitter entstehe dabei eine Art Oberflächenspannung, deren Energie aber geringer sei als der Zugewinn, den man durch diese effiziente Auslenkung erreicht. Wichtig ist dabei, dass die Verbindungen flexibel sind und nicht starr. "Die Kohlköpfe sind sozusagen mit Gummibändern miteinander verbunden, nicht mit Holzstäben", erklärt Fritz.

Das Phänomen sei zwar insgesamt nicht unbekannt gewesen, doch habe man ihm bisher kaum Bedeutung beigemessen. Durch den erstmaligen Nachweis der flexiblen Kristallgitter konnte Matthias Meißner ein Modell entwickeln und in Kooperation mit Theoretischen Physikern der Universität Jena den Effekt mathematisch beschreiben. Für zukünftige technische Innovationen - etwa während der Entwicklung neuartiger Displays und Solarzellen - lässt sich das geordnete Wachstum der Molekülschichten auf nicht exakt passenden Oberflächen besser berücksichtigen bzw. kann man es sich vielleicht sogar zunutze machen, um definierte Grenzflächen zu erschaffen. Ein Spezialist auf diesem Gebiet - der amerikanische Physiker Prof. Dr. Michael D. Ward von der New York University - veröffentlichte einen zusätzlichen Beitrag in ACS Nano, um die Ergebnisse der Jenaer Forscher zu würdigen und einzuordnen. Sein äußerst positives Fazit: Die neuen Ergebnisse machen die Erstellung molekularer Schichten interessanter, obwohl sie dadurch wahrscheinlich gleichzeitig komplizierter werden. 

Original-Publikation:
Matthias Meissner et. al.: Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves, ACS Nano, Article ASAP, DOI: 10.1021/acsnano.6b00935
Web: http://dx.doi.org/10.1021/acsnano.6b00935

Kontakt:
Prof. Dr. Torsten Fritz
Institut für Festkörperphysik der Universität Jena
Helmholtzweg 5, 07743 Jena
Tel.: 03641 / 947400
E-Mail: t


Logo Weltoffene Hochschulen gegen Fremdenfeindlichkeit

Logo Total E-Quality Coimbragroup Partnerhochschule des Spitzensports