Schnelleinstieg Reader

Home|Suche|Friedolin|Webmail deen

Wortmarke FSU

Kurzschluss in der Nahrungskette

Chemiker klären virale Infektionsmechanismen von Meeresalgen auf
PDF erstellen Seite weiterempfehlen
ReadSpeaker
zurück | vor
09.07.2014

 

Sie gehören zu den zahlenmäßig häufigsten Bewohnern des Meeres: winzige Kalkalgen der Art Emiliania huxleyi. Mit bloßem Auge gar nicht zu erkennen, bilden die Mikroalgen während ihrer Blütezeit im Frühjahr und Sommer quadratkilometergroße Teppiche, die sogar auf Satellitenaufnahmen sichtbar werden. "Emiliania huxleyi ist gemeinsam mit anderem Phytoplankton für etwa die Hälfte der globalen Fotosyntheseleistung verantwortlich", weiß Prof. Dr. Georg Pohnert von der Friedrich-Schiller-Universität Jena. Dabei wird das Treibhausgas Kohlendioxid - kurz CO2 - der Atmosphäre entzogen und Sauerstoff freigesetzt. "Zusätzlich nutzen die Mikroalgen CO2 zur Herstellung winziger Kalkplättchen, die ihre Außenhülle verstärken", so der Inhaber des Lehrstuhls für Instrumentelle Analytik und Bioorganische Analytik weiter. Damit seien die Einzeller ein entscheidender Faktor für ein stabiles Weltklima.

Die alljährliche Blüte von Emiliania huxleyi findet jedoch regelmäßig ein jähes Ende: die Algen werden massiv von Viren befallen und sterben dadurch ab. Wie die Viren die Algen dabei genau zur Strecke bringen, war bislang unklar. Doch das Team um Prof. Pohnert hat jetzt gemeinsam mit Forschern des Weizman Instituts in Israel das komplexe Zusammenspiel zwischen den Algen und den Viren untersucht. Wie sie im Fachmagazin "The Plant Cell" schreiben, konnten die Forscher erstmals die molekularen Mechanismen der Virus-Algen-Beziehung aufklären, die den gesamten Nahrungskreislauf der Meere wesentlich beeinflusst (DOI: 10.1105/tpc.114.125641).


Viren krempeln den Stoffwechsel der Algen komplett um

Dazu haben die Forscher Algen unter kontrollierten Bedingungen im Labor mit Viren infiziert und anschließend den gesamten Stoffwechsel der Mikroalgen analysiert. "Die Viren greifen massiv in den Stoffwechsel der Algen ein", fasst Pohnert die Ergebnisse zusammen. So nutzen sie chemische Bausteine der Algen, um sich selbst zu vermehren. Denn das ist für Viren nur durch die aktive Mithilfe des Wirtsorganismus möglich. "Die Viren bringen die Algen dazu, genau die molekularen Bausteine zu produzieren, die sie selbst benötigen", sagt Pohnert. Schon eine Stunde nach Beginn der Infektion haben die Viren den Stoffwechsel der Algen komplett umgekrempelt: die produzieren dann verstärkt bestimmte Sphingolipide, die die Viren zur Vermehrung brauchen. Nach wenigen Stunden platzen die infizierten Algen auf und setzen je etwa 500 neue Viren frei.

Doch, so konnten die Wissenschaftler in der vorliegenden Studie ebenfalls zeigen, die Mikroalgen ergeben sich nicht kampflos in ihr Schicksal. "Sie wehren sich, indem sie die Biosynthese von sogenannten Terpenen drastisch drosseln", macht Pohnert deutlich. Auch auf diese Kohlenwasserstoffe sind die Viren angewiesen. Schaltet man deren Produktion durch sogenannte Inhibitoren ab, verringert sich die Produktion neuer Viren deutlich.

Die Jenaer Forscher und ihre israelischen Kollegen planen nun, ihre im Labor erhaltenen Erkenntnisse in der Realität - im offenen Meer - zu überprüfen. Emiliania huxleyi und ihre Viren dienen dabei als Modellsystem, um das marine Nahrungsnetz besser zu verstehen. Bis vor kurzem, so erläutert Prof. Pohnert, wurde der Nahrungskreislauf im Meer eher als lineare Kette wahrgenommen: Algen, die die Sonnenenergie speichern und CO2 binden, sind die Nahrungsgrundlage für kleine Tiere und Fische, die wiederum von größeren Fischen gefressen werden. Doch durch die Viren komme es zu einer Art "Kurzschluss" in dieser Kette. "Die Viren zweigen so einen substanziellen Teil des gesamten fixierten Kohlenstoffs aus der bislang bekannten Nahrungskette ab und speisen daraus Bakterien in der Tiefsee", so Pohnert. Welche Konsequenzen das für andere Organismen im Meer und das gesamte Ökosystem hat, müssen weitere Studien zeigen.


Original-Publikation:
Rosenwasser S et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean, The Plant cell 2014, DOI: 10.1105/tpc.114.125641


Kontakt:
Prof. Dr. Georg Pohnert
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Lessingstraße 8, 07743 Jena
Tel.: 03641 / 948170
E-Mail:

 

 

 

 

Meldung vom: 2014-07-09 08:49

Logo Weltoffene Hochschulen gegen Fremdenfeindlichkeit

Logo Total E-Quality Coimbragroup Partnerhochschule des Spitzensports